Journal Articles, Communications, and Reviews
- “Plasma-assisted destruction of polystyrene nanoplastics” M.R. Winburn, M. F. Alvarado, and *C.L. Cheung. Nanoscale, In press, (2024).
- “Investigating degradation efficiency in plasma reactors through driving frequency optimization” M.R. Winburn and *C.L. Cheung. J. Phys. D, In press (2024).
- “Plasma-assisted synthesis of methanol through hydrogenation of carbon dioxide with non-noble metal mixed oxide catalysts” D. Choudhry, M.R. Winburn, S. Sarin, R.J. Chimentao, and *C.L. Cheung. ChemSusChem, e202400776 (2024). DOI: 10.1002/cssc.202400776
- “Degradation of fenitrothion by a falling-film plasma reactor” M.R. Winburn, E.L. De Leon, K.L. Schuelke, W.-N. Mei, H. Li, and *C.L. Cheung. Chem. Eng. J., 486, 150237 (2024). DOI: 10.1016/j.cej.2024.150237
- “Eco-friendly fabrication of coco coir composites for hydroponic cultivation: A green chemistry approach” A.K. Both, D. Choudhry, and *C.L. Cheung. New J. Chem., 47, 5488 (2023). DOI: 10.1039/D3NJ00226H
- “Valorization of hemp fibers into biocomposites via one-step pectin-based green fabrication process” A.K. Both, D. Choudnry, and *C.L. Cheung. J. Appl. Polym. Sci., 140, e53586 (2023) DOI: 10.1002/app.53586
- “Characterization of three-dimensional fractional viscoelastic models through complex modulus analysis and polar decomposition” *A. Ghosh, A.K. Both, and C.L. Cheung. Phys. Fluids, 34, 077115 (2022). DOI: 10.1063/5.0097196
- “Phytotoxic effect of sub-3-nm crystalline ceria nanoparticles on the hydroponic growth of Daikon radish microgreens” A.K. Both, E. Shaker, and *C.L. Cheung. ChemNanoMat, 8, e20220002 (2022). DOI: 10.1002/cnma.202200023
- “Valorization of coco coir into biocomposite materials through water-based chemistry” A.K. Both, J.A. Linderman, G. Madireddy, M.A. Helle and *C.L. Cheung. Ind. Crops Prod. 178, 114563 (2022).DOI: 10.1016/j.indcrop.2022.114563
- “Lateral growth of xenon hydrate films on mica” A.K. Both and *C.L. Cheung. AIMS Materials Science 8, 776-791 (2021). DOI: 10.3934/matersci.2021047
- “Formation of dimethyl carbonate via direct esterification of CO2 with methanol on reduced or stoichiometric CeO2 (111) and (110) surfaces” J. Jiang, C.M. Marin, A.K. Both, C.L. Cheung, L. Li, and *X.C. Zeng. Physical Chemistry Chemical Physics 23, 16150-16156 (2021). DOI: 10.1039/D1CP02152D
- “Green Chemical Approach to Fabricate Hemp Fiber Composites for Making Sustainable Hydroponic Growth Media” A.K. Both, M.A. Helle, and *C.L. Cheung. ACS Agricultural Science & Technology 1, 499-506 (2021). DOI: 10.1021/acsagscitech.1c00118
- “Gas hydrates in confined space of nanoporous materials: new frontier in gas storage technology” A.K. Both, Y. Gao, X.C. Zeng, and *C.L. Cheung. Nanoscale 13, 7447-7470 (2021). DOI: 10.1039/D1NR00751C2
- “Tunable catalytic activity in gadolinium-doped ceria nanoparticles for pro-oxidation of hydrogen peroxide” A. Bhalkikar, T.-S. Wu, T.J. Fisher, A. Sarella, D. Zhang, Y. Gao, Y.-L. Soo, and *C.L. Cheung. Nano Res. 13, 2384–2392 (2020). DOI: 10.1007/s12274-020-2861-2
- “Mechanistic insights into the acetate-accelerated synthesis of crystalline ceria nanoparticles” T.J. Fisher, D. Choudhry, K. Derrb, S. Azadehranjbarc, D. Staskob, and *C.L. Cheung. RSC Adv. 10, 20515-20520 (2020). DOI: 10.1039/D0RA02309D
- “Growth of carbon dioxide whiskers” A.K. Both, and *C.L. Cheung. RSC Adv. 9, 3780-23784 (2019). DOI: 10.1039/C9RA04583J
- “Structure–activity relationship of nanostructured ceria for the catalytic generation of hydroxyl radicals” T.J. Fisher, Y. Zhou, T.-S. Wu, M. Wang, Y.-L. Soo, and *C.L. Cheung. Nanoscale, 11, 4552-4561 (2019). DOI: 10.1039/C8NR09393H
- “Ozone-mediated synthesis of ceria nanoparticles” A. Bhalkikar, T.-S. Wu, C.M. Marin, T.J. Fisher, M. Wang, I.H. Wells, A. Sarella, Y.-L. Soo, and *C.L. Cheung. Nanoscale 10, 9822-9829 (2018). DOI: 10.1039/c8nr01971a
- “Crystallographic, vibrational modes and optical properties data of α-DIPAB crystal”, *A. Alsaad, C.M. Marin, N. Alaqtash, H.-W. Chao, T.-H. Chang, C.L. Cheung, A. Ahmad, I.A. Qattan, and R.F. Sabrianov. Data Brief 16, 667-684 (2018). DOI: 10.1016/j/dib/2017.11.074
- “Effect of bromine deficiency on the lattice dynamics and dielectric properties of alpha-phase diisopropylammonium bromide molecular crystals”, *A. Alsaad, C.M. Marin, N. Alaqtash, H.-W. Chao, T.-H. Chang, C.L. Cheung, A. Ahmad, I.A. Qattan, and R.F. Sabrianov. J. Phys. Chem Solids 113, 82-85 (2018). DOI: 10.1016/j.pcs.217.10.004
- “Size-Dependent Effect of Nanoceria on Their Antibacterial Activity Towards Escherichia coli”, M.A. Dar, R. Gul, A.A. Alfadda, M.R. Karim, D.W. Kim, C.L. Cheung, A.A. Almajid, N.H. Alharthi, and L. Pulakat. Sci. Adv. Mater. 9, 1248-1253 (2017). DOI: 10.1166/sam.2017.3098
- “Method Development for Separating Organic Carbonates by Ion-moderated high-performance liquid chromatography”, A. Bhalkikar, C.M. Marin, and *C.L. Cheung. J. Sep. Sci. 39, 4484-4491 (2016). DOI: 10.1002/jssc.201600743
- “Kinetic and mechanistic investigations of the direct synthesis of dimethyl carbonate from carbon dioxide over ceria nanorod catalysts”, C.M. Marin, L. Li, A. Bhalkikar, J.E. Doyle, X.C. Zeng, and *C.L. Cheung. J. Catal. 340, 295-301 (2016). DOI:10.1016/j.jcat.2016.06.003
- “Effect of sodium nitrate on microwave-assisted synthesis of ceria nanocubes”, T.J. Fisher, M. Wang, I. Yousif, B. Steffenmier, and *C.L. Cheung. Mater. Lett. 178, 71-74 (2016). DOI:10.1016/j.matlet.2016.04.186
- “X-ray absorption study of ceria nanorods on promoting the disproportionation of hydrogen peroxide”, T.S. Wu, Y. Zhou, R.F. Sabirianov, W.N. Mei, Y.-L. Soo,* and *C.L. Cheung. Chem. Commun. 52, 5003-5006 (2016). DOI: 10.1039/C5CC10643E
- “Cerium oxide as a promoter for the electro-oxidation reaction of ethanol: in situ XAFS characterization of the Pt nanoparticles supported on CeO2 nanoparticles and nanorods”, J. Corchado-García, L.E. Betancourt, C.A. Velez, S.D. Senanayake, D. Stacchiola, K. Sasaki, M.J. Guinel, Y. Zhou, B.C.L. Cheung, and *C.R. Cabrera. Phys. Chem. Chem. Phys. 17, 32251-32256 (2015). DOI: 10.1039/C5CP04813C
- “Recyclable magnetite nanoparticle catalyst for one-pot conversion of cellobiose to 5-hydroxymethylfurfural in water”, A. Bhalkikar, Z.C. Gernhart, and *C.L. Cheung. J. Nanomaterials, 2015, 264037 (2015). DOI: 10.1155/2015/264037
- “Experimental determination of gamma-ray discrimination in pillar structured thermal neutron detectors under high gamma-ray flux”, Q. Shao, A.M. Conway, L.F. Voss, R.P. Radev, R.J. Nikolić, M.A. Dar, and C.L. Cheung. Nucl. Instr. Meth. Phys. Res. A 799, 203-206 (2015). DOI: 10.1016/j.nima.2015.07.045
- “Electronic structures of lanthanum, samarium, and gadolinium sulfides”, L. Wang, C.M. Marin, W.N. Mei, and *C.L. Cheung. AIMS Mater. Sci. 2, 97-105 (2015). DOI: 10.3934/matersci.2015.2.97
- “One-pot conversion of cellobiose to mannose using a hybrid phosphotungstic acid-cerium oxide catalyst”, Z.C. Gernhart, A. Bhalkikar, J.J. Burke, K.O. Sonnenfeld, C.M. Marin, R. Zbasnik, and *C.L. Cheung. RSC Adv. 5, 28478-28486 (2015). DOI: 10.1039/C5RA02645H
- “Additive-free synthesis of cerium oxide nanorods with reaction temperature-tunable aspect ratios”, Z.C. Gernhart, C.M. Marin, J.J. Burke, K.O. Sonnenfeld, and *C.L. Cheung. J. Am. Ceram. Soc. 98, 39-43 (2015). DOI: 10.1111/jace.13286
- “Preparation and characterization of Pt/Pt:CeO2-x nanorod catalysts for short chain alcohol electrooxidation in alkaline media”, C.L. Menendez, Y. Zhou, C.M. Marin, N.J. Lawrence, E.B. Coughlin, *C.L. Cheung, and*C.R. Cabrera. RSC Adv. 4, 33489-33496 (2014). DOI: 10.1039/c4ra03807j
- “Pd/CeO2-x nanorod catalysts for CO oxidation: Insights into the origin of their regenerative ability at room temperature”, Y. Zhou, N.J. Lawrence, T.S. Wu, J. Liu, P. Kent, Y.L. Soo & *C.L. Cheung. ChemCatChem 6, 2937-2946 (2014). DOI: 10.1002/cctc.201402243
- “Influence of nanostructured ceria support on platinum nanoparticles for methanol electrooxidation in alkaline media”, Y. Zhou, C.L. Menéndez, M.J.-F. Guinel, E.C. Needels, I. González-González,D.L. Jackson, N.J. Lawrence, *C.R. Cabrera & *C.L. Cheung. RSC Adv. 4, 1270-1275 (2014). DOI:10.1039/C3RA45829F
- “Analysis of strain in dielectric coated three dimensional Si micropillar arrays”, *L.F. Voss, C.E. Reinhardt, R.T. Graff, A.M. Conway, Q. Shao, R.J. Nikolić, M.A. Dar, & C.L. Cheung. J. Vac. Sci. Technol. B 31, 060602 (2013). DOI:10.1116/1.4826500
- “Electronic properties of lanthanide hexaboride nanowires”, L. Wang, G. Luo, D. Valencia, C.H. Sierra Llavina, R.F. Sabirianov, J. Lu, J.-Q. Lu, W.N. Mei & *C.L. Cheung. J. Appl. Phys. 114, 143709 (2013). DOI:10.1063/1.4824285
- “Probing the bifunctional catalytic activity of ceria nanorods towards the cyanosilylation reaction”, G. Wang, L. Wang, *X. Fei, Y. Zhou, R.F. Sabirianov, W.N. Mei & *C.L. Cheung. Catal. Sci. Technol.3, 2602-2609 (2013). DOI:10.1039/C3CY00196B
- “Resonant photoemission observations and DFT study of s-d hybridization in catalytically active gold clusters on ceria nanorods”, Y. Zhou, N.J. Lawrence, L. Wang, L. Kong, T.-S. Wu, J. Liu, Y. Gao, J.R. Brewer, V.K. Lawrence, R.F. Sabirianov, Y.-L. Soo, X.C. Zeng, P.A. Dowben, W.N. Mei & *C.L. Cheung. Angew. Chem.Intl. 52, 6936-6939 (2013). DOI:10.1002/anie.201301383
- “Crystalline α-Sm2S3nanowires: Structure and optical properties of an unusual intrinsically degenerate semiconductor”,C.M. Marin, L. Wang, J.R. Brewer, W.N. Mei & *C.L. Cheung. J. Alloy. Compd. 563, 293-299 (2013). DOI: 10.1016/j.jallcom.2013.02.082
- “High aspect ratio composite structures with 48.5% thermal neutron detection efficiency”, Q. Shao, L.F. Voss, A.M. Conway, *R.J. Nikolic, M.A. Dar & C.L. Cheung. Appl. Phys. Lett. 102, 063505 (2013). DOI: 10.1063/1.4792703
- “Existence of erbium hexaboride nanowires”, Z.C. Gernhar, R.M. Jacobberger, L. Wang, J.R. Brewer,M.A. Dar,D.R. Diercks, W.N. Mei & *C.L. Cheung. J. Am. Ceram. Soc. 95, 3992-3996 (2012). DOI:10.1111/j.1551-2916.2012.05427.x
- “Controlling E. coli adhesion on high-k bioceramics films using poly(amino acids) multilayers”, N.J. Lawrence, J.M. Wells-Kingsbury, M.M. Ihrig, T.E. Fangman, F. Namavar & *C.L. Cheung. Langmuir 28, 4301-4308 (2012). DOI:10.1021/la2033725
- “Building crystalline Sb2S3nanowire dandelions with multiple crystal splitting motif”, G. Wang & *C.L. Cheung. Mater. Lett. 67, 222-225 (2012). DOI:10.1016/j.matlet.2011.09.07
- “Phase stabilization in nitrogen-implanted nanocrystalline cubic zirconia”, G. Wang, G. Luo, Y.L. Soo, R.F. Sabirianov, H.-J. Lin, W.N. Mei, F. Namavar, & *C.L. Cheung. Phys. Chem. Chem. Phys. 13, 19517-19525 (2011). DOI:10.1039/c1cp22132a
- “Defect engineering in cubic cerium oxide nanostructures for catalytic oxidation”, N.J. Lawrence, J.R. Brewer, L. Wang, T.-S. Wu, J.M. Wells-Kingsbury, M.M. Ihrig, G. Wang, Y.-L. Soo, W.N. Mei, & *C.L. Cheung. Nano Lett.11, 2666-2671 (2011). DOI:10.1021/nl200722z
- “Rare earth hexaboride nanowires: General synthetic design and analysis using atom probe tomography”, J.R. Brewer, R.M. Jacobberger, D.R. Diercks, & *C.L. Cheung. Chem. Mater.23, 2606-2610 (2011). DOI:10.1021/cm200258h
- “Formation of porous cerium oxide membrane by anodization”, N.J. Lawrence, K. Jiang, & *C.L. Cheung. Chem. Commun. 47, 2703-2705 (2011). DOI:10.1039/C0CC04806B
- “Growth of highly [100] textured gadolinium nitride films by chemical vapor deposition”, J.R. Brewer, Z. Gernhart, H.-Y. Liu, & *C.L. Cheung. Chem. Vap. Deposition 16, 216-219 (2010). DOI:10.1002/cvde.201004288
- “Planarization of high aspect ratio p-i-n diode pillar arrays for blanket electrical contacts”, *L.F. Voss, Q. Shao, C.E. Reinhardt, R.T. Graff, A.M. Conway, R.J. Nikolić, N. Deo, & C.L. Cheung. J. Vac. Sci. Technol. B 28, 916-920 (2010). DOI: 10.1116/1.3478306
- “Etching of 10boron with SF6-based electron cyclotron resonance plasmas for pillar structured thermal neutron detectors”, *L.F. Voss, R.T. Graff, C.E. Reinhardt, A.M. Conway, R.J. Nikolić, N. Deo, & C.L. Cheung. J. Electron. Mater. 39, 263-267 (2010). DOI: 10.1007/s11664-009-1068-9
- “Steric and electrostatic complementarity in the assembly of two-dimensional virus arrays”, *C.L. Cheung, A.I. Rubinstein, E.J. Peterson, A. Chatterji, R.F. Sabirianov, W.N. Mei, T. Lin, J.E. Johnson, & J.J. De Yoreo. Langmuir 26, 3498-3505 (2010). DOI: 10.1021/la903114s
- “Numerical simulations of pillar structured solid state thermal neutron detector: Efficiency and gamma discrimination”, *A.M. Conway, T.F. Wang, N. Deo, C.L. Cheung, & R.J. Nikolić. IEEE Trans. Nucl. Sci. 59, 2802-2807 (2009). DOI: 10.1109/TNS.2009.2021474
- “Comparison of CF4 and SF6 based plasmas for ECR etching of isotopically enriched 10boron films”, *L. Voss, C. Reinhardt, R.T. Graff, A. Conway, R.J. Nikolić, N. Deo, & C.L. Cheung. Nucl. Instrum. Meth. A 606, 821-823. (2009). DOI:10.1016/j.nima.2009.05.020
- “Morphological evolution of neodymium boride nanostructure growth by chemical vapor deposition”, G. Wang, J.R. Brewer, J.Y. Chan, D.R. Diercks, & *C.L. Cheung. J. Phys. Chem. C 113, 10446-10451 (2009). DOI: 10.1021/jp901717h
- “Local structures surrounding Zr in nanostructurally stabilized cubic zirconia: Structural origin of phase stability”, *Y.L. Soo, P.J. Chen, S.H. Huang, T.J. Shiu, T.Y. Tsai, Y.H. Chow, Y.C. Lin, S.C. Weng, S.L. Chang, C.L. Cheung, R.F. Sabirianov, W.N. Mei, F. Namavar, H. Haider, K.L. Garvin, J.F. Lee, H.Y. Lee, & P.P. Chu. J. Appl. Phys. 104, 113535 (2008). DOI:10.1063/1.3041490
- “6:1 aspect ratio silicon pillar based thermal neutron detector filled with 10B”, *R.J. Nikolić, A.M. Conway, C.E. Reinhardt, R.T. Graff, T.F. Wang, N. Deo, & C.L. Cheung. Appl. Phys. Lett. 93, 133502 (2008). DOI:10.1063/1.2985817
- “Conformal filling of silicon micro-pillar platform with 10boron”, N. Deo, J.R. Brewer, C.E. Reinhardt, R.J. Nikolić, & *C.L. Cheung. J. Vac. Sci. Technol. B 26, 1309-1314 (2008). DOI: 10.1116/1.2939260
- “Lotus effect in engineered zirconia”, *F. Namavar, *C.L. Cheung, R.F. Sabirianov, W.N. Mei, X.C. Zeng, G. Wang, H. Haider, & K.L. Garvin. Nano Lett. 8, 988-996 (2008). DOI: 10.1021/nl072147v
- “Structural study of titanium oxide films synthesized by ion beam assisted deposition”, G. Wang, J.R. Brewer, F. Namavar, R.F. Sabirianov, H. Haider, K.L. Garvin, & *C.L. Cheung. Scanning, 30, 59-64 (2008). DOI: 10.1002/sca.20093
- “Lanthanum hexaboride nanoobelisks”, J.R. Brewer, N. Deo, Y.M. Wang, & *C.L. Cheung. Chem. Mater. 19, 6379-6381 (2007). DOI: 10.1021/cm702315x
- “Thermal stability of nanostructurally stabilized zirconium oxide”, F. Namavar, G. Wang, *C.L. Cheung, R.F. Sabirianov, X.C. Zeng, W.N. Mei, J. Bai, J.R. Brewer, H. Haider, & K.L. Garvin. Nanotechnology 18, 415702-415707 (2007). DOI: 10.1088/0957-4484/18/41/415702
- ”Physical controls on directed virus assembly at nanoscale chemical templates”, C.L. Cheung, S.W. Chung, A. Chatterji, T. Lin, J.E. Johnson, S. Hok, J. Perkins, & *J.J. De Yoreo. J. Am. Chem. Soc. 128, 10801-10807 (2006). DOI: 10.1021/ja0616884
- “Fabrication of nanopillars by nanosphere lithography”, *C.L. Cheung, R. Welty, C.E. Reinhardt, & T.F. Wang. Nanotechnology 17, 1339-13 (2006). DOI: 10.1088/0957-4484/17/5/028
- Publications before joining UNL in 2005
- “Single-walled carbon nanotube AFM probes: optimal imaging resolution of nanoclusters and biomolecules in ambient and fluid environments”, *L. Chen, C.L. Cheung, P.D. Ashby, & C.M. Lieber. Nano Lett. 4, 1725-1731 (2004). DOI: 10.1021/nl048986o
- “Fabrication of assembled virus nanostructures with chemoselective linkers by scanning probe nanolithography”, C.L. Cheung, *J.A. Camarero, B.W. Woods, T. Lin, J.E. Johnson, & J.J. De Yoreo. J. Am. Chem. Soc. 125, 6848-6849 (2003). DOI: 10.1021/ja034479h
- “Diameter-controlled synthesis of carbon nanotubes”, C.L. Cheung, A. Kurtz, H. Park, & *C.M. Lieber. J. Phys. Chem. B 106, 2429-2433 (2002). DOI: 10.1021/jp0142278
- “Direct imaging of human SWI/SNF-remodeled mono- and polynucleosomes by atomic force microscopy employing carbon nanotube tips”, *G.R. Schnitzler, C.L. Cheung, J.H. Hafner, A.J. Saurin, R.E. Kingston, & C.M. Lieber, C.M. Mol. Cell Biol. 21, 8504-851 (2001). DOI: 10.1128/MCB.21.24.8504-8511.2001
- “Structural and functional imaging with carbon nanotube AFM probes”, J.H. Hafner, C.L. Cheung, A.T. Woolley, & *C.M. Lieber. Progr. Biophys. Mol. Biol. 77, 73-110 (2001). DOI:10.1016/S0079-6107(01)00011-6
- “Energy gaps in “metallic” single-walled carbon nanotubes”, M. Ouyang, J. Huang, C.L. Cheung, & *C.M. Lieber. Science 292, 702-705 (2001). DOI: 10.1126/science.1058853
- “High yield fabrication of individual single-walled nanotube probe tips for atomic force microscopy”, J.H. Hafner, C.L. Cheung, T. Oosterkamp, & *C.M. Lieber. J. Phys. Chem. B. 105, 743-746 (2001). DOI: 10.1021/jp003948o
- “Atomically resolved single-walled carbon nanotube intramolecular junctions”, M. Ouyang, J. Huang, C.L. Cheung, & *C.M. Lieber. Science 291, 97-100 (2001). DOI: 10.1126/science.291.5501.97
- “Structural biology with carbon nanotube AFM probes”, A.T. Woolley, C.L. Cheung, J.H. Hafner, & *C.M. Lieber. Chem. Biol. 7, R193-204 (2000). DOI:10.1016/S1074-5521(00)00037-5
- “Magnetic clusters on single-walled carbon nanotubes: The kondo effect in a one-dimensional host”, T.W. Odom, J. Huang, C.L. Cheung, & *C.M. Lieber. Science 290, 1549-1552 (2000). DOI: 10.1126/science.290.5496.1549
- “Carbon nanotube-based nonvolatile random access memory for molecular computing”, T. Rueckes, K. Kim, E. Joselevich, G.Y. Tseng, C.L. Cheung, & *C.M. Lieber. Science 289, 94-97 (2000). DOI: 10.1126/science.289.5476.94
- “Direct haplotyping of kilobase-size DNA using carbon nanotube probes”, A.T. Woolley, C. Guillemette, C.L. Cheung, D.E. Housman, & *C.M. Lieber. Nat. Biotechnol. 18, 760-763 (2000). DOI:10.1038/77760
- “Growth and fabrication with single-walled carbon nanotube probe microscopy tips”, C.L. Cheung, J.H. Hafner, T.W. Odom, K. Kim, & *C.M. Lieber. Appl. Phys. Lett. 76, 3136-3138 (2000). DOI:10.1063/1.126548
- “Carbon nanotube atomic force microscopy tips: Direct growth by chemical vapor deposition and application to high-resolution imaging”, C.L. Cheung, J.H. Hafner, & *C.M. Lieber. Proc. Acad. Sci. U.S.A. 97, 3809-3813 (2000). PMCID: PMC18098 DOI:10.1073/pnas.050498597
- “Direct growth of single-walled carbon nanotube scanning probe microscopy tips”, J.H. Hafner, C.L. Cheung, & *C.M. Lieber. J. Am. Chem. Soc. 121, 9750-9751 (1999). DOI: 10.1021/ja992761b
- “Structure-reactivity studies in copper (II)-catalyzed phosphodiester hydrolysis”, E.L. Hegg, S.H. Mortimore, C.L. Cheung, J.E. Huyett, D.R. Powell, & *J.N. Burstyn. Inorg. Chem. 38, 2961- 2968 (1999). DOI: 10.1021/ic981087g
- “Growth of nanotubes for probe microscopy tips”, J.H. Hafner, C.L. Cheung, & *C.M. Lieber. Nature 398, 761-762 (1999). DOI:10.1038/19658
- “Covalently functionalized single-walled carbon nanotube probe tips for chemical force microscopy”, S.S. Wong, A.T. Wolley, E. Joselevich, C.L. Cheung, & *C.M. Lieber. J. Am. Chem. Soc. 120, 8557-8558 (1998). DOI: 10.1021/ja9817803
- “Covalently functionalized nanotubes as nanometer-sized probes in chemistry and biology”, S.S. Wong, E. Joselevich, A.T. Wolley, C.L. Cheung, & *C.M. Lieber. Nature 394, 52-55 (1998). DOI:10.1038/27873
Proceedings
- “Photoelectron Spectroscopy Characterization and Computational Modeling of Gadolinium Nitride Thin Films Synthesized by Chemical Vapor Deposition” Z.C. Gernhart, J.A. Colón Santana, L. Wang, W.N. Mei, and *C.L. Cheung. MRS Proc. 1729, mrsf14-1729-m12-07 (2015). DOI: 10.1557/opl.2015.193
- “Experimental determination of gamma-ray discrimination in pillar-structured thermal neutron detectors under high gamma-ray flux” Q. Shao, A.M. Conway, L.F. Voss, R.P. Radev, R.J. Nikolić, M.A. Dar, and C.L. Cheung. Nucl. Instr. Methods Phys. Res. A 799, 203-206 (2015). DOI: 10.1016/j.nima.2015.07.045
- “Nanostructurally Designed Ultra-hydrophilic Hard Ceramic Oxide Coatings for Orthopaedic Application”F. Namavar, R.F. Sabirianov, J. Zhang, C.L. Cheung, C. Blatchley, R. Miralami, J.G. Sharp, and K.L. Garvin, MRS Proc.1578, mrss13-1578-yy05-07 (2013). DOI:10.1557/opl.2013.880
- “Si pillar structured thermal neutron detectors: fabrication challenges and performance expectations”, *R.J. Nikolić, Q. Shao, L. Voss, A.M. Conway, R. Radev, T.F. Wang, M. Dar, N. Deo, C.L. Cheung, L. Fabris, C.L. Britton, and M.N. Ericson. Proc. SPIE 8031, 803109 (2011) DOI:10.1117/12.885880
- “Vertical growth of metallic hexaboride nanowires and their field emission properties” R.M. Jacobberger, J.R. Brewer, and *C.L. Cheung. World J. Eng. 8 Supp. 1, 509-510 (2011).
- “Si pillar structured thermal neutron detectors: fabrication challenges and performance expectations”, *R.J. Nikolić, Q. Shao, L. Voss, A.M. Conway, R. Radev, T.F. Wang, M. Dar, N. Deo, C.L. Cheung, L. Fabris, C.L. Britton, and M.N. Ericson. Proc. SPIE 8031, 803109 (2011) DOI:10.1117/12.885880
- “Techniques for consecutive TEM and atom probe tomography analysis of nanowires”, *D.R. Diercks, B.P. Gorman, C.L. Cheung, and G. Wang. Microsc. Microanal. 15(Suppl 2), 254-255 (2009). DOI: 10.1017/S1431927609093398
- “Pillar structured thermal neutron detectors”, *R.J. Nikolić, A.M. Conway, C.E. Reinhardt, R.T. Graff, T.F. Wang, N. Deo, and C.L. Cheung. International Conference on Solid State and Integrated Circuit Technology (ICSICT), Beijing, China (2008).
- “Fabrication of pillar-structured thermal neutron detectors”, *R.J. Nikolić, A.M. Conway, C.E. Reinhardt, R.T Graff, T.F. Wang, N. Deo, and C.L. Cheung. in 2007 IEEE Nucl. Sci. Symp. Conf. Record, 1577-1580 (2007).
- “Searching for smart durable coatings to promote bone marrow stromal cell growth while preventing biofilm formation, In Biofilm-Material Interactions — New Tools, Technologies and Opportunities“, *F. Namavar, J.D. Jackson, J.G. Sharp, E.E. Mann, K. Bayles, C.L. Cheung, C.A. Feschuk, S. Varma, H. Haider & K.L. Garvin. (2007). M. Libera, T. Camesano, B. Kreiswirth, P. Li, and R.G. Richards eds. (Mater. Res. Soc. Symp. Proc. 954E, Warrendale, PA), pp. 0954-H04-04 (2007).
- “Future of semiconductor based thermal neutron detectors”, *R.J. Nikolić, C.L. Cheung, C.E. Reinhardt, and T.F. Wang. Nanotech conference 2006, Boston, MA. (2006).
- “Roadmap for high efficiency solid-state neutron detectors”, *R.J. Nikolić, C.L. Cheung, C.E. Reinhardt, and T.F. Wang. Proc. SPIE 6013, 601305-9 (2005). DOI:10.1117/12.633256
- “Atomic force microscopy investigation of virus aggregation and assembly at chemical templates formed by scanned probe nanolithography” C.L. Cheung, *S.-W. Chung, J.J. De Yoreo, A. Chatterji, T. Lin, and J.E. Johnson. in Proc. SCANNING 2005 April 5-7, 2005 Monterey, Calif., USA (p 59-111). Scanning 27, 99-100 (2005). DOI: 10.1002/sca.4950270202
Patents
- “Ozone-Mediated Synthesis of Nanostructures”, C.L. Cheung, C.M. Marin, A. Bhalkikar, T.J. Fisher. US Patent #: 11,577,956. Date of Patent Issued: Feb 14, 2023.
- Methods of making and using lignin derivatives. M.A. Helle, C.L. Cheung. US Patent #: 10533031. Date of Patent: Oct 26, 2021.
- Synthesis of cerium oxide nanorods. C.L. Cheung, Z.C. Gernhart. US Patent #: 9738541. Date of Patent: Aug 22, 2017.
- Cerium oxide having high catalytic performance. C.L. Cheung, N.J. Lawrence, J.R. Brewer, G. Wang. US Patent #: 9561491. Date of Patent: Feb 7, 2017.
- Stress reduction for pillar filled structures. R.J. Nikolic, A. Conway, Q. Shao, V. Lars, C.L. Cheung, M.A. Dar. US Patent #: 9121947. Date of Patent: Sep 1, 2015.
- Crystalline nanostructures. C.L. Cheung, N. Deo, J.R. Brewer. US Patent #: 8247070. Date of Patent: Aug 21, 2012.
- Three-dimensional boron particle loaded thermal neutron detector. R.J. Nikolic, A.M. Conway, R.T. Graff, J.D. Kuntz, C. Reinhardt, L.F. Voss, C.L. Cheung, D. Heineck. US Patent # 8829460. Date of Patent: Jul 18, 2012.
- Direct growth of nanotubes, and their use in nanotweezers. C.M. Lieber, J.H. Hafner, P. Kim, C.L. Cheung. US Patent # 6743408. Date of Patent: Jun 1, 2004
- Fabrication of nanotube microscopy tips. C.M. Lieber, J.H. Hafner, C.L. Cheung. US Patent #: 6716409. Date of Patent: Apr 6, 2004.