# Shape Control Growth of Crystalline Lanthanum and Neodymium



# Hexaboride Nanostructures

Gonghua Wang<sup>1</sup>, Joseph R. Brewer<sup>1</sup> and <u>Chin Li Cheung<sup>1,2</sup></u>

<sup>1</sup>Department of Chemistry, University of Nebraska-Lincoln and <sup>2</sup>Nebraska Center for Materials and Nanoscience, Lincoln, NE 68588-0304. \*Contact e-mail address: ccheung2@unl.edu

## Introduction



# Objectives

1. Synthesize high aspect-ratio crystalline lanthanum and neodymium hexaboride nanostructures with controlled shape and dimensions.

2. Verify the growth mechanism and evaluate the effect of synthesis parameters.

# Reaction

LnCl<sub>3</sub>(s)+ 0.6 B<sub>10</sub>H<sub>14</sub>(g)  $\rightarrow$  LnB<sub>6</sub>(s)+ 3 HCl(g)+ 2.7 H<sub>2</sub>(g) During the chemical vapor deposition (CVD), LaCl<sub>3</sub>or NdCl<sub>3</sub> and decaborane (B<sub>10</sub>H<sub>14</sub>) serve as the La/Nd and B source. Palladium (Pd) or platinum (Pt) nanoparticles are used as catalysts.

# **CVD Setup and Experiments**



#### **Optimize growth parameters on structural morphology**

- Temperature, T<sub>r</sub>: 900 1000 °C
  Substrate Position: 10 16 cm from the centre of the
- furnace • Gas Flow Rate: 0.25 - 0.75 sccm  $B_{10}H_{14}$ , 10 sccm Ar
- Catalyst Type: Pt vs. Pd
  Reaction time, t.: 0.5 10 min.
- Reaction time,  $t_r$ . 0.5 10 mm.

## **Results and Discussions**

## LaB<sub>6</sub>: Pt Catalyst

#### **Nanostructure Shape Evolution**



### Results indicate substrate position determines shape!

### **TEM Characterization**



TEM of high temperature materials indicate single-crystalline and a [001] growth direction !



EDX indicates that the dark spot at the end of the tip is Pt and that the amorphous coating on the outside of the obelisk is B.

## NdB<sub>6</sub>: Pt vs. Pd Catalyst

#### Effect of Catalyst on Materials Growth: Pt vs. Pd

Parameters: t<sub>r</sub>=10min, Ar 10sccm, B<sub>10</sub>H<sub>14</sub> 0.75sccm 900°C 930°C



Compared to Pt, the Pd-catalyzed nanowire growth can be executed at lower reaction temperature (about 50°C or lower)

#### **Time Evolution**

Parameters:  $T_r$ =930 °C, catalyst Pd, 10 sccm Ar, 0.75 sccm  $B_{10}H_{14}$ , 13 cm from center of the furnace.



As reaction time increases, the length of the nanowires increases.





well with Arrhenius equation. The calculated activation energy is c.a. 2.6 eV.

#### **Tip Geometry**

CVD parameters:  $t_r$ =10 min, 10 sccm Ar, 0.25-0.75sccm  $B_{10}H_{14}$ , 12 cm from center of the furnace



Tip geometry from rod, wire to obelisk shape can be obtained by judicious selection of CVD parameters and catalyst systems.

## Conclusions

- 1. High aspect ratio **LaB**<sub>6</sub> and **NdB**<sub>6</sub> **nanostructures** have been grown via a metal-catalyzed CVD process.
- 2. Materials synthesized were single-crystalline, several microns long with tip diameters ranging from several to tens of nanometers.
- 3. The structural morphology of LaB<sub>6</sub> and NdB<sub>6</sub> nanostructures as a function of temperature, reaction time and catalyst has been investigated.
- 4. The **activation energy** of NdB<sub>6</sub> nanowires produced with Pd catalyst has been estimated using the Arrhenius model to be  $\sim$ 2.6 eV.

## Acknowledgements

We thank the support from Nebraska Research Initiative and UNL. We thank Y.M. Wang for help with HRTEM.

