Introduction

Cerium (IV) Oxide (CeO\textsubscript{2-x}, 0 \leq x \geq 0.5) is an important industrial catalyst used in:

• Petroleum Refining
• Catalytic Converters
• Organic Chemical Synthesis
• Fuel Cells
• Chemical Sensors

Defect sites have a large influence on the catalytic activity of cerium oxide. Microwave heating provides an efficient method to synthesize cerium oxide nanomaterials.

The effect of the unique heating profile provided by microwaves on the resulting nanostructures, particularly on the types and concentrations of defects, merits further investigation.

Aims

1. Investigate the effect of reaction temperature on the morphology of cerium oxide nanomaterials synthesized by the microwave hydrothermal method.
2. Characterize the defects present on the as-synthesized cerium oxide nanomaterials.

Method

The microwave hydrothermal process provides:

• Unique heating profiles
• Shorter synthesis times
• Variation in nanomorphology

- Reactants: Ce\textsubscript{2}(SO\textsubscript{4})\textsubscript{3} and 10 M NaOH
- Temperature: 80 °C – 200 °C
- Temperature Ramp Rate: 2 °C/min.
- Reaction Time: 1 hour
- Pressure: 0 psig – 160 psig

- Microwave Model: CEM Mars 6
- Maximum Power: 1800 W
- Reaction Vessel: CEM EasyPrep
- Vessel Material: Teflon
- Vessel Volume: 100 mL

- Lattice parameters in table found by Rietveld analysis using FullProf Suite.

Results

• Sample Appearance

• TEM

• XRD

• Raman

• UV-Vis

Conclusions

• The microwave hydrothermal method can be used to rapidly produce CeO\textsubscript{2-x} nanorods of varying size.
• The color of the as-synthesized nanomaterials changes with temperature.
• Distortion of the cerium oxide lattice decreases with increasing temperature.

References

Acknowledgements

• Johnny Goodwin at the University of Alabama for the HRTEM images.
• The Sinitskii Group at UNL for the use of their Raman Microscope
• The Zhang Group at UNL for the use of their UV-Vis