Assembly Principles in Two Dimensional Ordered Virus Arrays

Chin Li Cheung, *,1,2 Alexander I. Rubinstein,3 Erik J. Peterson,2 Anju Chatterji,4 Renat F. Sabirianov,³ Wai-Ning Mei,³ Tianwei Lin,⁴ John E. Johnson⁴ & James J. DeYoreo² ¹University of Nebraska-Lincoln, NE 68588; ²Lawrence Livermore National Laboratory, CA 94550; ³University of Nebraska at Omaha, NE 68182; ⁴The Scripps Research Institute, CA 92037.

> 2-D Fourier Transform

> > DC 6.0 n

5.0 nm DC 6.0 nm

b R period R period (28.7 nm) (30.1

*Contact e-mail address: ccheung2@unl.edu

Results

potential on degree of order

Dependence of packing on % PEG

2D arrays on mica show effect of interaction

AFM Image

Introduction

Experimental Method

of parameters for ordered packing

1. Deposit virus solution on mica

2. Dry under a controlled environmen

3. Image films by

atomic force microscop

Drop-dry experiments to determine appropriate sets

Petri dis

Virus solution:

30 µl volume, 0.50 mg/ml virus,

2 mM phosphate buffer pH = 7

Vary solution composition:

Surfactant composition

(6kDa polyethylene glycol, PEG)

model

- Virus concentration

Better order: mostly rhombic, some square

PEG: 0.001 %

Well ordered: hexagonal

PEG: 0.04 %

PEG co-deposited prevents imaging

Discussions

Addition of polymers can dramatically change the interaction potentials on macromolecular assembly

Addition of surfactant polymers (typically PEG):

- . Introduces a non-specific, depletion mediated attraction
- When particles are close, absence of PEG between the particles create an osmotic pressure gradient to promote aggregation of particles
- 2. Increase the nucleation rate of proteins
- 3. Size and concentration of polymer controls range of attraction

PEG co solutio Averag array, 2 Averag

· Electrostatic potential and geometric arrangement of charge patches on CPMV capsids can be used to deduce interaction configurations between neighboring CPMVs.

· Postulated electrostatic and steric complementarity principles explain three different observed 2-D CPMV assembly configurations

 Steric and electrostatic complementarity principles can be applied to design and assemble other complex biological building blocks

Financial support from the University of Nebraska-Lincoln, Nebraska Research Initiative, Office of Naval Research (N00014-00-1-0671) and Office of Basic Energy Science at Department of Energy.

Steric & electrostatic model for 2-D CPMV assembly

AFM image

Deduction of the average size of a CPMV virion from the 2D array AFM data

Hexagon representation of a virus array

2s: Diameter of each virus (hexagon) d: Relative transversal shift of two neighboring hexagons from their symmetry axes Note: Adjacent distance between a positively charge patch and a negative charge patch is ~ 5.1 nm

Average size of a CPMV virion and the transversal shift (d) between two virions obtained from the 2D CPMV arrays data

oncentration in the virus n for the array formation (wt. %)	0	0.0002	0.001
e size of a CPMV virion in the s (nm)	30.2	30.2	28.6
e transversal shift, d, between acent virions (nm)	5.88	5.88	5.15

Conclusions

Acknowledgements